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Abstract 

Quality requirements for manufacturers are becoming higher to meet customer 
demands. Manual inspection is traditionally required to guarantee product quality. But 
this requires significant cost, production bottlenecks, lowered productivity, and reduced 
efficiency. Automating defect inspection with artificial intelligence (AI) is beginning to 
revolutionize manufacturing. Deep learning (DL), especially convolutional neural 
networks (CNN), has proven to be very effective for image detection and classification, 
and is now being adopted to solve industrial inspection tasks. One popular and effective 
neural network architecture—originally proposed for biomedical image segmentation— 
is the U-Net architecture, which is composed of encoders, decoders and skip-connection 
layers. 

Industrial defect detection and classification shares many of the same data challenges as 
medical image segmentation, including the scarcity of labeled data and highly 
asymmetric datasets. U-Net has proven to be successful at generalizing performance 
with regularization techniques. In this white paper, U-Net was utilized to build an 
end-to-end generic defect inspection model on a public dataset, using the NVIDIA® DL 
platform for end-to-end training and inference. A recall rate of 96.38% and a 99.25% 
precision rate with a 0.11% false-alarm rate were achieved. Although traditional 
computer vision methods might be able to achieve similar results, they typically require 
intensive human and capital involvement. The U-Net approach avoids labor-intensive 
and potentially fragile feature engineering and instead allows data-driven models to 
automatically learn robust feature representations to generate state of the art detection 
and segmentation results. 

By using NVIDIA Tesla® V100 GPUs with the NVIDIA TensorRT™ (TRT) 4 engine 
integrated into a TensorFlow (TF) container, inference throughput increased by a factor 
of 2.1. With an optimized TRT container using the NVIDIA GPU Cloud (NGC), inference 
throughput was further improved by a factor of 8.6 compared to native TF. NVIDIA T4 
GPUs and TensorRT 5 engine were used for energy efficient and small form factor 
inference deployment. Compared CPU-based TF inferencing, inference throughput was 
increased by a factor of 23.5 based on an optimized TensorRT container from NGC. For 
low-power and small form factor edge-inferencing, the NVIDIA Jetson™ Nano platform 
throughput is 18 fps, and the NVIDIA Jetson AGX Xavier platform is 228.1 fps (12.7 times faster 
than the Jetson Nano platform) 

  

https://www.nvidia.com/en-us/data-center/tesla-v100/
https://developer.nvidia.com/tensorrt
https://ngc.nvidia.com/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
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Chapter 1. Automatic Defect 
Inspection for Industrial Applications 

With increased global competition, manufacturers are seeking to develop smart factory 
strategies that utilize advanced Information Technology (IT) and Operational 
Technology (OT) to facilitate and automate their manufacturing processes. To achieve 
this goal, manufacturing systems are often required to automatically see and understand 
the world. In this white paper, we focus on the problem of manufacturing automation 
based on optical inspection using DL. 

Optical quality inspection remains one of the common methods to ensure quality control 
for high-precision manufacturing. However, this step remains a bottleneck to full 
automation and integration. The quality checks may include a series of manual 
operations, including visual confirmation to make sure components are the right color, 
shape, texture, and position, which are very challenging due to wide product variations. 
Quality inspectors must constantly adapt to different quality requirements for different 
products, which often leads to inaccuracy and a lack of consistent quality. With 
ever- increasing production volumes, quality inspectors often suffer from eye fatigue 
and other health issues caused by repetitive product inspection over long hours, 
allowing more defective parts to pass. Human inspection is constrained by increasing 
cost, making it a challenging solution to scale. 
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A common type of industrial defects are local anomalies on homogeneous surfaces. 
Proposed approaches to automate the detection and classification of these anomalies can 
be divided into four categories: 

1. Structural based on defect morphology1 

2. Statistical texture measure-based2,3 

3. Hand-crafted transform filter-based4,5 

4. Machine learning model-based6 

Before DL, most of these traditional approaches were designed with hand-crafted 
features, making them application dependent and not able to generalize or scale-out to 
new applications. These traditional approaches also typically suffered from poor 
flexibility and often required expensive and time-consuming manual feature 
engineering by domain experts. In contrast to traditional methods, DL performs 
automated feature extraction using a data driven method that does not rely on 
hand-crafted features. A nearly overwhelming corpus of CNN-based defect 
classification models have been proposed in recent years7,8,9. Industrial defects are often 

                                                   

1 " Detecting Defects in Fabric with Laser-Based Morphological Image Processing" 
http://journals.sagepub.com/doi/10.1177/004051750007000902. [Accessed 2019-06-17] 

2 T. Vujasinovic, J. Pribic, K. Kanjer, Milosevic NT, Z. Tomasevic, Z. Milovanovic, D. Nikolic-Vukosavljevic, 
M. Radulovic, Gray-level co-occurrence matrix texture analysis of breast tumor images in prognosis of 
distant metastasis risk, Microscopy Microanal, vol. 21, no. 3, pp. 646–654, 2015. 

3 T. Mäenpää and M. Pietikäinen, Texture analysis with local binary patterns, Handbook Pattern Recognit. 
Comput. Vis., vol.3, pp. 197–216, May 2005. 

4 F. Malik and B. Baharudin, the statistical quantized histogram texture features analysis for image retrieval 
based on median and Laplacian filters in the DCT domain, Int. Arab J. Inf. Technol., vol. 10, no. 6, pp. 616–
624, 2012 

5 H. Ji, X. Yang, H. Ling, and Y. Xu, Wavelet domain multifractal analysis for static and dynamic texture 
classification, IEEE Trans. Image Process., vol. 22, no. 1, pp. 286–299, Jan. 2013 

6 " 3D surface inspection using coupled HMMs"  
https://ieeexplore.ieee.org/document/1334508/. [Accessed 2019-06-17] 

7 R. Ren, T. Hung, and K. C. Tan, A generic deep-learning-based approach for automated surface inspection, 
IEEE Trans. Cybern., vol. 99, no. 2, pp. 1–12, 2017. 

8 D. Weimer, B. Scholz-Reiter, and M. Shpitalni, Design of deep convolutional neural network architectures 
for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol., vol. 65, no. 1, pp. 
417-420, 2016. 

9 J.-K. Park, B.-K. Kwon, J.-H. Park, and D.-J. Kang, Machine learning-based imaging system for surface 
defect inspection,” Int. J. Precision Eng. Manuf.-Green Technol., vol. 3, no. 3, pp. 303–310, 2016. 

http://journals.sagepub.com/doi/10.1177/004051750007000902
https://ieeexplore.ieee.org/document/1334508/
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relatively small, so it is necessary to localize the defect area in addition to detecting and 
classifying them. 

Defect inspection for industrial applications has unique characteristics and challenges 
compared to other computer vision problems for consumer applications: 

 Lack of labeled, annotated, and curated data. Curating quality datasets requires 
manpower, time, and budget. Before executing a data campaign, feasibility testing 
with a limited labeled dataset is beneficial. Datasets with very few labeled defects and 
with abundant instances of normal class are heavily unbalanced and require 
augmentation. Proper data augmentation that preserves the statistical properties of 
the true physical behavior is a key technique to complement defect classes and to 
balance datasets. 

 Defects of interests are structures with low contrast. Industrial inspection 
applications from different equipment often produces different sized images with 
different contrast. Often defects are with low contrast. An example of this is the  
DAGM 2007 dataset. 

 Multi-scale defect sizes. Trained DL models are typically scale invariant, meaning 
they need not be retrained across image sizes to be effective for multiple input sizes. 
CNN based DL can segment arbitrary input size. The segmentation algorithm should 
be end-to-end, segmenting defects in one shot execution of pipeline. 

Detection algorithms should be able to segment defects from images with a variety of 
background, focus, rotation, scale, occlusion, and lighting. They also need to detect and 
locate defects with the required precision and meet production goal of latency and 
throughput. DL has shown performance improvement over hand-crafted machine 
vision algorithm in computer vision since 2012. In this white paper, DL is applied to 
detect defects in an industrial dataset reliably and efficiently. Specifically, the U-Net DL 
architecture has been applied to segment 2D defects as discussed in the next chapter. 

http://resources.mpi-inf.mpg.de/conferences/dagm/2007/prizes.html
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Chapter 2. Using U-Net to Solve Defect 
Inspection Challenges 

Deep neural networks (DNNs) have attained impressive breakthroughs in various 
domains, such as image classification, object detection, and semantic segmentation.10 
Successful applications span across business verticals, including consumer internet 
services, healthcare, autonomous vehicles manufacturing, and many others. 

In the last few years, one of the most successful state-of-the-art DL methods for single 
forward pass segmentation has been based on the fully convolutional neural network 
(FCN)11. The main idea of this approach is to use CNN as a powerful feature extractor by 
replacing the fully connected layers with convolutional layers to output spatial feature 
maps. Those maps are further upsampled to produce dense pixel-wise output. This 
method allows training CNN to segment images of arbitrary sizes. Moreover, this 
approach achieved an improvement in segmentation accuracy over common methods 
on standard datasets like PASCAL VOC.  

This method has been further extended and improved for a variety of use cases, 
including a popularly cited network architecture called the U-Net neural network 
architecture12. In this white paper, we apply U-Net as a DL model for 2D industrial 
defect inspection. U-Net is a CNN architecture that can detect, classify, localize, and 
segment defects at the same time. The basic architecture is an encoder-decoder pair with 

                                                   

10 "Deep Learning for Computer Vision Tasks: A review." 2018-04-2018,  
https://arxiv.org/abs/1804.03928. [Accessed 2019-06-17] 

11 J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 
2014. 

12 O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image 
segmentation. In MICCAI, pages 234–241. Springer, 2015. 

http://host.robots.ox.ac.uk/pascal/VOC/
https://arxiv.org/abs/1804.03928
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skip connections to combine low-level feature maps with higher-level ones (see Figure 1, 
which is from the published U-net paper, for an overview of the architecture). An 
encoder contracts the whole image for analysis and then a decoder successively expands 
an encoded bottleneck layer output to produce a full-resolution segmentation result. 
Many feature channels in the upsampling part allows context information to propagate 
to higher resolution layers.  

Figure 1. U-Net architecture 

Modified U-Net is a suitable model for defect segmentation of DAGM dataset. When 
there is a shortage of labeled data and fast performance is needed, U-net is a great 
choice. On different scenarios of industrial inspection, there are other DL networks 
worth mentioning. If there are golden samples available paired with defect samples, 
pairing two-channel input and feeding into the network or even Siamese network13, can 
increase discriminative power of the model. For example, this is the case of an AOI 
machine example from PCB assembly manufacturing. If there is no shortage of labeled 
data and a bounding box as well as a segmentation mask are needed, Mask R-CNN14 can 
be used. With decoupled mask and class prediction, inference speed of 5 fps on NVIDIA 
Tesla M40 GPU was reported for Mask R-CNN. If only bounding box is needed, many 
well-known object detection methods can be applied. Abundant object detection 
methods were proposed in the field of autonomous driving. For example, Single-Shot 

                                                   

13 G. Koch, R. Zemel, R. Salakhutdinov Siamese Neural Networks for One-shot Image Recognition. In ICML 
2015 
14 K. He, G. Gkioxari, P. Dollar, R. Girshick Mask R-CNN in ICCV 2017 
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Detector (SSD)15 and YOLO v316 are publicly available. Many derivatives of these 
methods were published and demonstrated for real-time super-human performance of 
object detection. 

To address a strong data imbalance in the dataset (such as far more nominal than 
defective data), random elastic image deformation is used as a data augmentation 
technique to enable the end-to-end training of the network. These results show that 
U-Net learns to predict segmentation accurately with good generalization by using a 
semi-supervised end-to-end training approach. A great deal of low-level information is 
shared by skip-connection to a symmetrical layer in encoder-decoder architecture. 
Shortcutting low-level information produces high-quality results. 

U-Net was initially proposed for medical image segmentation and won the international 
segmentation and tracking competition in 201517. Since then, U-Net has also been 
successfully applied for a variety of applications outside of medical imaging, including 
source separation (singing voice)18, 3D dense volumetric segmentation19 from sparse 
annotation, and image-to-image translation20. 

The defect inspection and localization models were trained and evaluated using the 
public dataset originally introduced for the DAGM 2007 Competition of “Weakly 
Supervised Learning for Industrial Optical Inspection”. 

                                                   

15 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR, 
abs/1512.02325, 2015 
 
16 J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018. 

17 "U-Net: Convolutional Networks for Biomedical Image Segmentation"  
https://arxiv.org/abs/1505.04597. [Accessed 2019-06-16] 

18 Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A. & Weyde, T. (2017). Singing voice 
separation with deep U-Net convolutional networks. Paper presented at the 18th International Society for 
Music Information Retrieval Conference, 23-27 Oct 2017, Suzhou, China. 
 
19 O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3d u-net: Learning dense 
volumetric segmentation from sparse annotation. arXiv preprint arXiv:1606.06650, 2016 
 
20 P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial 
networks. In CVPR, 2017 

https://arxiv.org/abs/1505.04597
http://openaccess.city.ac.uk/view/creators_id/t=2Ee=2Eweyde.html
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Chapter 3. Defect Inspection from 
Inception to Production 

3.1 Deep Learning End-to-End Workflow 
An overview of the developer workflow of a DL project, from pre-training to training to 
inference, is shown in Figure 2. All end-to-end processes are built on top of NGC 
optimized docker images for fast iterations. Pre-training involves model development, 
debugging, testing, and validation. During pre-training, a data scientist pulls the 
optimized images from the NGC docker registry and directly works on top of pulled 
images. 

 

Figure 2. Defect inspection from inception to production 

As a best practice, before starting large-scale training with a powerful machines such as 
NVIDIA DGX™ servers, the engineer may run a few training epochs to test and validate the 
software stack and system configuration. If the training behaves as expected after a few 
epochs, the engineer can then shift the process to a full-scale training run to fully train 

https://www.nvidia.com/en-us/data-center/dgx-systems/
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the neural network model. At this point the model is ready for large-scale training and 
can be moved to a powerful training system easily and conveniently with GPU-enabled 
docker containers. After the model is trained and achieves desired target metrics, the model 
can be optimized for performance, latency, and efficiency with TRT. Easy deployment of 
TRT is also available from NGC TRT docker containers. Furthermore, TensorRT inference 
server (TRT-IS) enables flexible deployment of the inference model. 

TRT is integrated into TensorFlow 1.7+ branches (see this NVIDIA Developer Blog for 
details). With a simple API call to TRT, powerful mixed precision Tensor Core 
inferencing on Tesla V100 GPUs can be applied without leaving TF. In this white paper, 
we used TensorFlow:18.08-py3 NGC container, which was build based on TensorFlow 1.9.0 
and TensorRT 4.0.1. Advanced users can use native TensorRT inferencing with tensorrt 
18.08-py3 container. We will share inferencing experimental results based on both 
TensorFlow-TensorRT (TF-TRT) and TRT in section 3.6. Using T4 GPUs powered by 
NVIDIA Turing Tensor Cores, we further experimented inference with NGC container 
TensorFlow:19.01-py3 and TensorRT:19.01-py3, with results updated in section 3.6. These 
containers were built with TensorFlow 1.12.0 and TensorRT 5.0.2, respectively. Once test 
feasibility is verified on a datacenter GPU like V100 or T4 with TF-TRT for fast 
prototyping, then Jetson Nano or Jetson AGX Xavier platform can be used for low-
power edge-inferencing.   

3.2 Setting the Target Metric and Project Scope 
The first step is to decide performance evaluation metrics for the defect inspection 
project. This metric can be precision and recall rates, or the harmonic mean of the two, and 
F1-measure. The single-number evaluation metric is vital for a successful DL project since 
the follow-up experiments would be developed upon this metric21. In a typical defect 
inspection scenario, recall rate would usually be required to achieve 100%, which means 
any defect escape is not allowed. What we are trying to achieve with DL is to increase 
the precision rate, or in other words, to reduce false alarm rate while keeping 100% 
recall of all defects. However, achieving both high recall and precision a hard problem 
as shown in section 3.6 and the tradeoff is needed per application. 

There may be more than one defect class in a typical defect inspection scenario, and we 
would suggest focusing on top N defect classes first. N is 5 or 10 primary defects 
depends on your scenario and application. Instead of setting up a huge scope to tackle 
all defect classes, an alternative is to select N defects and start to collect and label 
images. 

                                                   

21 A. Ng, Machine Learning Yearning http://www.mlyearning.org/ 

https://www.nvidia.com/object/docker-container.html
https://www.nvidia.com/object/docker-container.html
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_19.01.html#rel_19.01
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_19-01.html#rel_19-01
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-0-2
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
http://www.mlyearning.org/
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3.3 Labeling Defect Images 
In our application, labeled defect images are composed of binary outputs, where zeros 
represent defect areas shown in white, and ones represent defect-free areas shown in 
black in Figure 3.  

In most cases that you need labeling, there are many open source labeling tools in 
GitHub, such as LabelMe. They can be integrated and implemented with an in-house data 
preparation pipeline. It is an important interactive step to build a smooth data 
preparation pipeline with correct labeling. In our experience, the first label output from 
labelers might not be correct. It is typical for labeling to go through iterative review 
process. The challenge is that not all defect patterns are easy to recognize by people 
without necessary training. In practice we have found that this labeling process can be 
one of the most productive ways to leverage your most valuable domain experts. 

In a related case that occurred at NVIDIA, three labelers reviewed a single defective 
image to draw bounding boxes. To speed-up review process, reference and defective 
images were combined to create a side-by-side view. After the first iteration of labeling, 
between 5-10% mismatched labels were identified. The mismatched images were then 
isolated, and the labels were again reviewed. This process was repeated until a 0% 
mismatch between labelers was reached. Finally, the average of the three labelers 
dimensions was calculated and used for modeling. 

Since the outputs of a DL segmentation model are probabilities of all image pixels, we 
can fully utilize these values as a threshold to achieve project target metrics. We will 
illustrate this topic in Section 3.4. 

3.4 Data Preparation 
Segmentation is a supervised learning process that maps input images to an output 
segmentation map. DL trains this nonlinear complex mapping function. The following 
image shows the input image and its corresponding output images of six DAGM defect 
classes. Each defect class contains 150 defect images and 1000 defect-free images. The 
defect inside an image was bounded with an ellipse. The parameters of this ellipse were 
recorded in a separate text file, including semi-major axis, semi-minor axis, rotating 
angle, and x, y position of the center of the ellipsoid. 

 OpenCV was used generate the respective label image with these parameters as shown 
in Figure 3. 

https://github.com/wkentaro/labelme
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Figure 3. DAGM defect images and its corresponding labeled output 

Two different settings were prepared using the same dataset (Table 1). Training Set 1 is 
used to train the model to detect each defect class, totaling six defects. Therefore, the 
defect images of each class will be prepared separately. 100 defect images are used for 
each defect class to train the U-Net model, the other 50 defect images and 1000 defect-
free images will be used to test the model, and provide average IOUs22, precision and 
recall rates. Training Set 2 is used to demonstrate the generalization capability of U-Net. 
All defect classes in Training Set 2 are unified and treated as a single class. We will build 
a single U-Net model that is able to segment all defect classes. This kind of process is 

                                                   

22 "Intersection over Union (IoU) for object detection - PyImageSearch." 2016-11-07, 
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/.  
[Accessed 2019-03-11] 

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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common in defect inspection. In this white paper, we will explain the DL application 
process for Training Set 2. 

Setting Training Set Size Validation Set Size Testing Set Size 

Defect / Defect-free 

1 100 30 20 / 1000 

2 630 138 132 / 6000 

Table 1. Dataset preparation 

3.5 Model Development 
Once the dataset is ready with defect images and its corresponding labeled images, we 
can start to build the mapping function with U-Net deep learning segmentation model. 
Many best practices on how to set up appropriate experiments to achieve target metrics 
can be found in Andrew Ng’s Machine Learning Yearning book. To make modeling work 
easier, we use the same architecture as U-Net, and experiment with the number of 
kernels to make the model fit into our dataset. U-Net is a flexible DL model. The first 
step is to fit the dataset with U-Net model, i.e., eight kernel numbers in the first layer, 
then doubling the kernel number in the following hierarchy of layers, as shown in 
Figure 1. Then we observe the loss from the training learning curve and decide whether 
to increase further the model complexity. This step is to make sure that we have a model 
with enough capacity to recognize all defects. Once you have confidence that the model 
is complex enough to fit the dataset, then add regularization techniques, such as drop 
out layers, L1 or L2 regularization, or even try to augment the dataset. The goal is to 
make sure the loss on validation learning curve drops smoothly along with the loss on 
training. This prevents overfitting the model. 

In this white paper, U-Net model was built with eight kernel number in the first layer 
for both training sets. The other parameter that was ignored was padding. Since U-Net 
modeling is an encoding-decoding process, it first encodes the input image with several 
convolution and max pooling layers, then decodes to the output layer with the same 
number of convolution layers and max pooling layers. It is a symmetric mapping 
function with the same layer numbers in both encoding and decoding sections. Having 
the same padding setting makes things much easier, since each feature map convolved 
by kernels remain the same size. The dropout layer is the only layer that would decrease 
the shape of feature maps. The input image size should be a power of two (as per Figure 
1). Every image was resized to 512x512 from the original DAGM dataset of size 500x500. 

http://www.mlyearning.org/
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The model was trained with binary cross entropy and Adam optimizer23 with a learning 
rate starting with 1e-3. As shown in Figure 4, learning curves for both training and 
validation loss decline smoothly over 50 epochs. This means the learned U-Net model 
can learn to fit to the training and validation dataset well. 

•  

Figure 4. Learning curve 

After training for 50 epochs, Figure 5 shows the prediction result of U-net compared to 
Ground truth. 

  

  

  

Figure 5. U-Net prediction results 

                                                   

23 " Gentle Introduction to the Adam Optimization Algorithm for Deep Learning" 2017-07-03, 
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.  
[Accessed 2019-03-11] 

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/


Defect Inspection from Inception to Production 

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 13 

3.6 Output Tradeoffs Between Precision and 
Recall 

The output of a classification model is a vector of probabilities, where each vector 
represents class probability of each class of the query image predicted by the model. The 
final predicted class is assigned with maximum likelihood criteria. In a segmentation 
model, like U-Net, the output is also a set of probabilities. These probabilities are well 
organized in the original query image format. 

Table 2 shows an example output from a segmentation model. The original output from 
the segmentation model is shown in left column in a NumPy array format. In the right 
column is the visualized output that would usually be seen when printed out by 
matplotlib. These digits are probabilities of all pixels of 512x512. The threshold was set 
to 0.5 by default, i.e., every pixel was shown in white if the number is above 0.5, 
otherwise in black. This finally leads to a visualization to show us the defect area in the 
image. 

NumPy Output matplotlib Output 

 

 

Table 2. Output from U-Net model 
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The following abbreviations are used throughout the rest of this section: 

 TN: true negative 
 FN: false negative 
 TP: true positive 
 FP: false positive 

Figure 6 is a simple illustration of binary anomaly detection, visually showing the 
impacts of threshold change on precision and recall. For illustration only, defects and 
non-defects distributions are Gaussian distributions, and defects are fewer than 
non-defects. In real scenarios, each distribution would be more complicated, most likely 
with multiple peaks, either from Gaussian distribution (from Central Limit Theorem) or 
non-Gaussian distribution. In addition, defects populations are typically much smaller 
than non-defects in industrial applications.  

Figure 6. Illustration of simple binary anomaly detection 

In the experimental results in Table 3, defects are about seven times fewer. In real 
production case, defects are much smaller, typically in the tens to hundreds of defect 
parts per million (DPPM) range. The red arrow in Figure 6 shows an increase in the 
probability threshold, raising the criteria for predicting a defect. As Figure 6 illustrates, 
false positives decrease as the threshold increases, thereby increasing precision. 
However, at the same time, false negatives get larger, reducing recall. This illustrates the 
fundamental trade-off between precision and recall. Determining the right threshold to 
bias towards precision or recall is entirely application dependent. This requires sweep 
experiments of precision and recall on the threshold of probability as shown in Table 3. 
If reducing false positives (increasing precision) is more important, you need to increase 
the threshold on probability while balancing precision-recall tradeoff. Achieving high 
precision and high recall means your classifier has high discriminative power and the 
areas under the receiver operating characteristic (ROC) curve is a measure of how well 
classifier works. 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure 7 is another graphical illustration of a precision-recall diagram. You can think of 
this diagram as projecting data distributions in Figure 6 into x-y plane from z-axis. The 
area inside the circle is what ML algorithm detects as a defect. 7(a) and 7(b) show the 
impact of precision and recall depending on the threshold of probability gets higher. If 
the threshold on probability becomes higher, defect detection becomes harder, making 
the circle smaller, and shifting the decision circle towards defects areas. In summary, 
false negatives increase and false positives decrease, making recall lower and precision 
higher. 

 

Figure 7. Precision-recall diagram on different thresholds of probability 

In real scenarios, data distribution as well as selecting the decision boundary from 
anomaly detector based on DL is much more complicated to visualize. The journal 
Nature’s 2015 paper titled “Deep Learning” by LeCun, Bengio, Hinton24 has a great 
discussion and illustration on how learning data representations using DL transforms a 
high-dimensional dataset into a suitable internal representation and automatically 
discover the best representation from which to define boundaries needed for detection 
or classification. These learned internal representations allow decision boundaries to be 
defined that have been shown to drastically reduce the tradeoff between increasing 
sensitivity to true positives while significantly reducing the rate of false positives. For 
industrial applications where the cost of false positives can be extremely high, this can 
be a source of tremendous value. 

                                                   

24 Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning, 436, Vol 521, Nature, 2015. 

 

   7(a) Low threshold of probability                 7(b) High threshold of probability 

FN FN TN TN 

FP TP FP TP 
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Table 3 shows precision-recall tradeoff from the sweep experiments varying the 
threshold of probability. Total image data were 1039 (defects: 138, non-defects: 901). 

Experiment 
Threshold 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TP 137 135 135 135 135 135 135 133 131 

TN 885 893 899 899 899 899 899 900 901 

FP 16 8 2 2 2 2 2 1 0 

FN 1 3 3 3 3 3 3 5 7 

FP rate  0.0178 0.0089 0.0023 0.0023 0.0023 0.0023 0.0023 0.0011 0.0000 

Precision 0.8954 0.9441 0.9854 0.9854 0.9854 0.9854 0.9854 0.9925 1.0000 

Recall 0.9928 0.9783 0.9783 0.9783 0.9783 0.9783 0.9783 0.9638 0.9493 

Table 3. Precision-recall experiments 

With a threshold of 0.8, reasonable 99.25% precision, 96.38% recall, and 0.11% false 
alarm rate were achieved. Table 4 is another way to view the same result. 

 

Actual 

Defect Defect-free 

Pr
ed

ic
te

d 

Defect 99.25% 0.75% 

Defect-free 0.55% 99.45% 

Table 4. Confusion matrix 

In a production case at NVIDIA, a non-DL based AOI machine in PCBA manufacturing 
produces high false positives with low precision. Thus, increasing precision by DL 
automation is critical. 

The U-Net model learns to accurately detect defects from a test dataset. It can generate 
pixel-wise probabilities that can be used to make final decisions such as whether 
something has a defect or is defect-free. This two-step process is common and can be 
applied to many use cases, including medical imaging, video surveillance, and 
autonomous machines. The first step uses U-Net to extract information from the input, 
then the second step makes the final decision according to information from the 
previous step. 
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Some examples from different verticals are shown in Table 5. 

Healthcare 

 

 
MRI 

 
CT Scan 

 
Microscopic Image 

Output  Left Ventricle Nodule Nuclei 

Interpretation Heart disease Lung Cancer Drug Discovery 

Smart Cities/Autonomous Machines 

 

 
Camera Image 

 
Camera Image 

 
Camera Image 

Output Human Road Road 

Interpretation Intrusion alert Path for car to drive Path for drone to fly 

Industrial 

 

  
Hard Disk Drive 

  
Injection Molding Parts 

 
Semiconductor Wafer 

Output Defect area Defect area Defect (optical hot spot)  

Interpretation Defect or defect free Defect or defect free Defect or defect free 

Table 5. Segmentation models in different verticals 
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3.7 Model Deployment 
The NVIDIA Deep Learning SDK, including TRT will be helpful before deployment in the field 
and TensorRT inference server (TRT-IS) enables flexible deployment of the inference model. 
TRT is a high-performance DL inference optimizer and runtime that delivers low latency 
and high-throughput for DL inference applications. Based on NVIDIA Docker, the TRT 
container encapsulates all the libraries, executables, and drivers you need to develop a 
TRT-based inference application. After downloading an NGC Docker image, you are in 
a GPU-optimized local development environment for your inference solution with all 
software and required dependencies installed. This is a starting point for your own 
container-based edge, datacenter, or cloud deployment.  

Applications software engineers or advanced users, who are comfortable with the 
additional steps required to take a DL model into an environment which might not have 
TensorFlow framework, are encouraged to use native TRT for maximum performance.  

We used tensorrt 18.08-py3 NGC container for our experiments, based on TRT 4.0.1. Data 
scientists or users for rapid prototyping should run optimized accelerated inference 
without leaving TF framework. We used TF-TRT inferencing based on TensorFlow 18.08-
py3 NGC container. This TF-TRT container integrates with TRT 4.0.1. 

Inferencing experimental results based on Tesla V100 GPUs and TensorRT 4 were 
shown in Table 6. On mixed precision FP16 inferencing, we can see there are 
performance boost of 2.1 times with TF-TRT and 8.6 times with TRT compared to native 
TensorFlow. The tradeoff for TF-TRT versus TRT is that TF-TRT is easy to use and 
integrates with TensorFlow workflows for fast prototyping. Once your idea is verified to 
work with TF-TRT, TRT can be used for maximum performance.  

Precision 
Inference Method 

TF TF-TRT TRT 

FP32 
Images/sec 141.8 236.1 1079.8 

Performance Increase 1 1.7 7.6 

FP16 
Images/sec N/A 297.4 1219.7 

Performance Increase 1 2.1 8.6 

NOTE: FP32 TRT, FP32/FP16 TF-TRT for batch=128. FP16 TRT for batch=64. FP16 results are all through 
Tensor Core mixed precision inferencing at Tesla V100 GPU for the input image size of 512x512. Tesla 
V100 GPUs on a NVIDIA DGX Station™ workstation were used 

Table 6. TF, TF-TRT, and TRT performance comparisons ― Tesla V100 GPUs and 
TensorRT 4 engine 

 

https://docs.nvidia.com/deeplearning/sdk/index.html
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/parallelforall/nvidia-docker-gpu-server-application-deployment-made-easy/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/rel_4-0-1.html#rel_4-0-1
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08
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Inferencing experimental results based on T4 GPUs and TensorRT 5 are shown in Table 
7. Compared to CPU-based inference performance, there is a performance boost of 11.9 
times with TF-TRT and 23.5 times with INT8 precision of TRT5 by NVIDIA Turing Tensor 
Cores. The T4 GPU is packaged with an energy-efficient 70-watt, small PCIe form factor, 
optimized for scale-out servers and purpose built to deliver state-of-the-art AI. 

Precision Inference Method 

 CPU-TF GPU-TF TF-TRT5 TRT5 

FP32 
Images/sec 38.6 230.4 320.0 438.8 

Performance increase 1 5.8 8.1 11.1 

FP16 
Images/sec N/A N/A 334.0 501.0 

Performance increase N/A N/A 8.4 12.6 

INT8 
Images/sec N/A N/A 459.0 909.0 

Performance Increase N/A N/A 11.9 23.5 

NOTE: All experiments were with batch=64. INT8 and FP16 results are all through Tensor Core mixed 
precision inferencing at T4 GPU for the input image size of 512x512. The T4 GPU was used with Intel 
CPU Skylake Gold 6148 v3 @ 2.40 GHz, dual socket 20-core 

Table 7. TF, TF-TRT, and TRT performance comparisons ― T4 GPUs 

  

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
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Using the same code, Jetson Nano platform throughput is 18 fps and Jetson AGX 
Xavier platform throughput is 228.1 fps —a performance boost of 12.7 times that of 
the Jetson Nano platform. These results, shown in Table 8, were obtained using 
native TRT.  

Table 8. Edge device performance ― Jetson Nano and Xavier AGX platforms 

With native TRT, a DL framework like Tensorflow does not need to be installed on edge 
devices. This is important for them since compute power and disk storage are limited. 

Field 
Embedded Device 

Jetson Nano Jetson AGX Xavier 

Input Precision FP16 FP16 INT8 

Throughput(fps) 18.0 131.9 228.1 

Speedup vs. Nano 1.0 7.3 12.7 

NOTE: All experiments were with batch=1 and with maximum performance mode at Jetson. 
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Chapter 4. Summary and Future Work 

As shown in this white paper, the NVIDIA Deep Learning platform can be successfully 
applied to detection and segment defects in an end-to-end fashion for fast development 
of automatic industrial inspection. Particularly, the U-Net architecture and the DAGM 
2007 dataset was used for this demonstration. U-Net was able to train with good 
generalization using a small labeled dataset. U-Net produced one-shot high-resolution 
segmentation results overlaid on top of the input image. For fast deployment of DL 
training and inferencing, NGC was used for Volta GPU optimized TensorFlow and 
TensorRT docker containers. We achieved 96.38% recall rate and 99.25% precision rate 
with 0.11% false alarm rate. Best-performing results on these two metrics are key 
requirements for industrial inspection.  

On Tesla V100 GPUs and TRT4 engine, from a TensorFlow container with a TensorRT 
engine integrated, inference throughput increased by a factor of 2.1. With an optimized 
TensorRT container from NGC, inference throughput was further improved by a factor 
of 8.6. T4 GPUs and TRT5 engine were used for energy efficient and small form factor 
inference deployment. Compared CPU-based TF inferencing, inference throughput was 
increased by a factor of 23.5 based on an optimized TensorRT container from NGC. For 
low-power and small form factor edge-inferencing, Jetson Nano platform throughput is 
18 fps and Jetson AGX Xavier platform throughput 228.1 fps. 

Future work includes using Siamese network for one-shot learning. This is an interesting 
idea and worth exploration given the scarcity of dataset industrial inspection. For AOI 
defect detection on PCBA manufacturing, Siamese network will be explored since they 
have matching golden samples as well as defects. 
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