

WP-09268-001 | June 2019

White Paper

Automatic Defect Inspection
Using the NVIDIA End-to-End
Deep Learning Platform

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | ii

Document Change History

WP-09268-001

Version Date Authors Description of Change

01 2018-10-30 Peter Pyun, Andrew Liu, and Robert Sohigian Initial release

02 2019-03-12 Peter Pyun, Charles Cheung, Andrew Liu,
and Robert Sohigian

Updated inference experiments
on T4 GPUs /TRT5 engine.

03 2019-06-17 Peter Pyun, Robert Sohigian Updated inference experiments
run on Jetson AGX Xavier and
Nano platforms.

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | iii

Abstract

Quality requirements for manufacturers are becoming higher to meet customer
demands. Manual inspection is traditionally required to guarantee product quality. But
this requires significant cost, production bottlenecks, lowered productivity, and reduced
efficiency. Automating defect inspection with artificial intelligence (AI) is beginning to
revolutionize manufacturing. Deep learning (DL), especially convolutional neural
networks (CNN), has proven to be very effective for image detection and classification,
and is now being adopted to solve industrial inspection tasks. One popular and effective
neural network architecture—originally proposed for biomedical image segmentation—
is the U-Net architecture, which is composed of encoders, decoders and skip-connection
layers.

Industrial defect detection and classification shares many of the same data challenges as
medical image segmentation, including the scarcity of labeled data and highly
asymmetric datasets. U-Net has proven to be successful at generalizing performance
with regularization techniques. In this white paper, U-Net was utilized to build an
end-to-end generic defect inspection model on a public dataset, using the NVIDIA® DL
platform for end-to-end training and inference. A recall rate of 96.38% and a 99.25%
precision rate with a 0.11% false-alarm rate were achieved. Although traditional
computer vision methods might be able to achieve similar results, they typically require
intensive human and capital involvement. The U-Net approach avoids labor-intensive
and potentially fragile feature engineering and instead allows data-driven models to
automatically learn robust feature representations to generate state of the art detection
and segmentation results.

By using NVIDIA Tesla® V100 GPUs with the NVIDIA TensorRT™ (TRT) 4 engine
integrated into a TensorFlow (TF) container, inference throughput increased by a factor
of 2.1. With an optimized TRT container using the NVIDIA GPU Cloud (NGC), inference
throughput was further improved by a factor of 8.6 compared to native TF. NVIDIA T4
GPUs and TensorRT 5 engine were used for energy efficient and small form factor
inference deployment. Compared CPU-based TF inferencing, inference throughput was
increased by a factor of 23.5 based on an optimized TensorRT container from NGC. For
low-power and small form factor edge-inferencing, the NVIDIA Jetson™ Nano platform
throughput is 18 fps, and the NVIDIA Jetson AGX Xavier platform is 228.1 fps (12.7 times faster
than the Jetson Nano platform)

https://www.nvidia.com/en-us/data-center/tesla-v100/
https://developer.nvidia.com/tensorrt
https://ngc.nvidia.com/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | iv

Contents

Chapter 1. Automatic Defect Inspection for Industrial Applications 1
Chapter 2. Using U-Net to Solve Defect Inspection Challenges 4
Chapter 3. Defect Inspection from Inception to Production 7

3.1 Deep Learning End-to-End Workflow ... 7
3.2 Setting the Target Metric and Project Scope .. 8
3.3 Labeling Defect Images ... 9
3.4 Data Preparation ... 9
3.5 Model Development .. 11
3.6 Output Tradeoffs Between Precision and Recall ... 13
3.7 Model Deployment .. 18

Chapter 4. Summary and Future Work .. 21

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 1

Chapter 1. Automatic Defect
Inspection for Industrial Applications

With increased global competition, manufacturers are seeking to develop smart factory
strategies that utilize advanced Information Technology (IT) and Operational
Technology (OT) to facilitate and automate their manufacturing processes. To achieve
this goal, manufacturing systems are often required to automatically see and understand
the world. In this white paper, we focus on the problem of manufacturing automation
based on optical inspection using DL.

Optical quality inspection remains one of the common methods to ensure quality control
for high-precision manufacturing. However, this step remains a bottleneck to full
automation and integration. The quality checks may include a series of manual
operations, including visual confirmation to make sure components are the right color,
shape, texture, and position, which are very challenging due to wide product variations.
Quality inspectors must constantly adapt to different quality requirements for different
products, which often leads to inaccuracy and a lack of consistent quality. With
ever- increasing production volumes, quality inspectors often suffer from eye fatigue
and other health issues caused by repetitive product inspection over long hours,
allowing more defective parts to pass. Human inspection is constrained by increasing
cost, making it a challenging solution to scale.

Automatic Defect Inspection for Industrial Applications

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 2

A common type of industrial defects are local anomalies on homogeneous surfaces.
Proposed approaches to automate the detection and classification of these anomalies can
be divided into four categories:

1. Structural based on defect morphology1

2. Statistical texture measure-based2,3

3. Hand-crafted transform filter-based4,5

4. Machine learning model-based6

Before DL, most of these traditional approaches were designed with hand-crafted
features, making them application dependent and not able to generalize or scale-out to
new applications. These traditional approaches also typically suffered from poor
flexibility and often required expensive and time-consuming manual feature
engineering by domain experts. In contrast to traditional methods, DL performs
automated feature extraction using a data driven method that does not rely on
hand-crafted features. A nearly overwhelming corpus of CNN-based defect
classification models have been proposed in recent years7,8,9. Industrial defects are often

1 " Detecting Defects in Fabric with Laser-Based Morphological Image Processing"
http://journals.sagepub.com/doi/10.1177/004051750007000902. [Accessed 2019-06-17]

2 T. Vujasinovic, J. Pribic, K. Kanjer, Milosevic NT, Z. Tomasevic, Z. Milovanovic, D. Nikolic-Vukosavljevic,
M. Radulovic, Gray-level co-occurrence matrix texture analysis of breast tumor images in prognosis of
distant metastasis risk, Microscopy Microanal, vol. 21, no. 3, pp. 646–654, 2015.

3 T. Mäenpää and M. Pietikäinen, Texture analysis with local binary patterns, Handbook Pattern Recognit.
Comput. Vis., vol.3, pp. 197–216, May 2005.

4 F. Malik and B. Baharudin, the statistical quantized histogram texture features analysis for image retrieval
based on median and Laplacian filters in the DCT domain, Int. Arab J. Inf. Technol., vol. 10, no. 6, pp. 616–
624, 2012

5 H. Ji, X. Yang, H. Ling, and Y. Xu, Wavelet domain multifractal analysis for static and dynamic texture
classification, IEEE Trans. Image Process., vol. 22, no. 1, pp. 286–299, Jan. 2013

6 " 3D surface inspection using coupled HMMs"
https://ieeexplore.ieee.org/document/1334508/. [Accessed 2019-06-17]

7 R. Ren, T. Hung, and K. C. Tan, A generic deep-learning-based approach for automated surface inspection,
IEEE Trans. Cybern., vol. 99, no. 2, pp. 1–12, 2017.

8 D. Weimer, B. Scholz-Reiter, and M. Shpitalni, Design of deep convolutional neural network architectures
for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol., vol. 65, no. 1, pp.
417-420, 2016.

9 J.-K. Park, B.-K. Kwon, J.-H. Park, and D.-J. Kang, Machine learning-based imaging system for surface
defect inspection,” Int. J. Precision Eng. Manuf.-Green Technol., vol. 3, no. 3, pp. 303–310, 2016.

http://journals.sagepub.com/doi/10.1177/004051750007000902
https://ieeexplore.ieee.org/document/1334508/

Automatic Defect Inspection for Industrial Applications

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 3

relatively small, so it is necessary to localize the defect area in addition to detecting and
classifying them.

Defect inspection for industrial applications has unique characteristics and challenges
compared to other computer vision problems for consumer applications:

 Lack of labeled, annotated, and curated data. Curating quality datasets requires
manpower, time, and budget. Before executing a data campaign, feasibility testing
with a limited labeled dataset is beneficial. Datasets with very few labeled defects and
with abundant instances of normal class are heavily unbalanced and require
augmentation. Proper data augmentation that preserves the statistical properties of
the true physical behavior is a key technique to complement defect classes and to
balance datasets.

 Defects of interests are structures with low contrast. Industrial inspection
applications from different equipment often produces different sized images with
different contrast. Often defects are with low contrast. An example of this is the
DAGM 2007 dataset.

 Multi-scale defect sizes. Trained DL models are typically scale invariant, meaning
they need not be retrained across image sizes to be effective for multiple input sizes.
CNN based DL can segment arbitrary input size. The segmentation algorithm should
be end-to-end, segmenting defects in one shot execution of pipeline.

Detection algorithms should be able to segment defects from images with a variety of
background, focus, rotation, scale, occlusion, and lighting. They also need to detect and
locate defects with the required precision and meet production goal of latency and
throughput. DL has shown performance improvement over hand-crafted machine
vision algorithm in computer vision since 2012. In this white paper, DL is applied to
detect defects in an industrial dataset reliably and efficiently. Specifically, the U-Net DL
architecture has been applied to segment 2D defects as discussed in the next chapter.

http://resources.mpi-inf.mpg.de/conferences/dagm/2007/prizes.html

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 4

Chapter 2. Using U-Net to Solve Defect
Inspection Challenges

Deep neural networks (DNNs) have attained impressive breakthroughs in various
domains, such as image classification, object detection, and semantic segmentation.10
Successful applications span across business verticals, including consumer internet
services, healthcare, autonomous vehicles manufacturing, and many others.

In the last few years, one of the most successful state-of-the-art DL methods for single
forward pass segmentation has been based on the fully convolutional neural network
(FCN)11. The main idea of this approach is to use CNN as a powerful feature extractor by
replacing the fully connected layers with convolutional layers to output spatial feature
maps. Those maps are further upsampled to produce dense pixel-wise output. This
method allows training CNN to segment images of arbitrary sizes. Moreover, this
approach achieved an improvement in segmentation accuracy over common methods
on standard datasets like PASCAL VOC.

This method has been further extended and improved for a variety of use cases,
including a popularly cited network architecture called the U-Net neural network
architecture12. In this white paper, we apply U-Net as a DL model for 2D industrial
defect inspection. U-Net is a CNN architecture that can detect, classify, localize, and
segment defects at the same time. The basic architecture is an encoder-decoder pair with

10 "Deep Learning for Computer Vision Tasks: A review." 2018-04-2018,
https://arxiv.org/abs/1804.03928. [Accessed 2019-06-17]

11 J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR,
2014.

12 O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In MICCAI, pages 234–241. Springer, 2015.

http://host.robots.ox.ac.uk/pascal/VOC/
https://arxiv.org/abs/1804.03928

Using U-Net to Solve Defect Inspection Challenges

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 5

skip connections to combine low-level feature maps with higher-level ones (see Figure 1,
which is from the published U-net paper, for an overview of the architecture). An
encoder contracts the whole image for analysis and then a decoder successively expands
an encoded bottleneck layer output to produce a full-resolution segmentation result.
Many feature channels in the upsampling part allows context information to propagate
to higher resolution layers.

Figure 1. U-Net architecture

Modified U-Net is a suitable model for defect segmentation of DAGM dataset. When
there is a shortage of labeled data and fast performance is needed, U-net is a great
choice. On different scenarios of industrial inspection, there are other DL networks
worth mentioning. If there are golden samples available paired with defect samples,
pairing two-channel input and feeding into the network or even Siamese network13, can
increase discriminative power of the model. For example, this is the case of an AOI
machine example from PCB assembly manufacturing. If there is no shortage of labeled
data and a bounding box as well as a segmentation mask are needed, Mask R-CNN14 can
be used. With decoupled mask and class prediction, inference speed of 5 fps on NVIDIA
Tesla M40 GPU was reported for Mask R-CNN. If only bounding box is needed, many
well-known object detection methods can be applied. Abundant object detection
methods were proposed in the field of autonomous driving. For example, Single-Shot

13 G. Koch, R. Zemel, R. Salakhutdinov Siamese Neural Networks for One-shot Image Recognition. In ICML
2015
14 K. He, G. Gkioxari, P. Dollar, R. Girshick Mask R-CNN in ICCV 2017

Using U-Net to Solve Defect Inspection Challenges

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 6

Detector (SSD)15 and YOLO v316 are publicly available. Many derivatives of these
methods were published and demonstrated for real-time super-human performance of
object detection.

To address a strong data imbalance in the dataset (such as far more nominal than
defective data), random elastic image deformation is used as a data augmentation
technique to enable the end-to-end training of the network. These results show that
U-Net learns to predict segmentation accurately with good generalization by using a
semi-supervised end-to-end training approach. A great deal of low-level information is
shared by skip-connection to a symmetrical layer in encoder-decoder architecture.
Shortcutting low-level information produces high-quality results.

U-Net was initially proposed for medical image segmentation and won the international
segmentation and tracking competition in 201517. Since then, U-Net has also been
successfully applied for a variety of applications outside of medical imaging, including
source separation (singing voice)18, 3D dense volumetric segmentation19 from sparse
annotation, and image-to-image translation20.

The defect inspection and localization models were trained and evaluated using the
public dataset originally introduced for the DAGM 2007 Competition of “Weakly
Supervised Learning for Industrial Optical Inspection”.

15 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015

16 J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018.

17 "U-Net: Convolutional Networks for Biomedical Image Segmentation"
https://arxiv.org/abs/1505.04597. [Accessed 2019-06-16]

18 Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A. & Weyde, T. (2017). Singing voice
separation with deep U-Net convolutional networks. Paper presented at the 18th International Society for
Music Information Retrieval Conference, 23-27 Oct 2017, Suzhou, China.

19 O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3d u-net: Learning dense
volumetric segmentation from sparse annotation. arXiv preprint arXiv:1606.06650, 2016

20 P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In CVPR, 2017

https://arxiv.org/abs/1505.04597
http://openaccess.city.ac.uk/view/creators_id/t=2Ee=2Eweyde.html

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 7

Chapter 3. Defect Inspection from
Inception to Production

3.1 Deep Learning End-to-End Workflow
An overview of the developer workflow of a DL project, from pre-training to training to
inference, is shown in Figure 2. All end-to-end processes are built on top of NGC
optimized docker images for fast iterations. Pre-training involves model development,
debugging, testing, and validation. During pre-training, a data scientist pulls the
optimized images from the NGC docker registry and directly works on top of pulled
images.

Figure 2. Defect inspection from inception to production

As a best practice, before starting large-scale training with a powerful machines such as
NVIDIA DGX™ servers, the engineer may run a few training epochs to test and validate the
software stack and system configuration. If the training behaves as expected after a few
epochs, the engineer can then shift the process to a full-scale training run to fully train

https://www.nvidia.com/en-us/data-center/dgx-systems/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 8

the neural network model. At this point the model is ready for large-scale training and
can be moved to a powerful training system easily and conveniently with GPU-enabled
docker containers. After the model is trained and achieves desired target metrics, the model
can be optimized for performance, latency, and efficiency with TRT. Easy deployment of
TRT is also available from NGC TRT docker containers. Furthermore, TensorRT inference
server (TRT-IS) enables flexible deployment of the inference model.

TRT is integrated into TensorFlow 1.7+ branches (see this NVIDIA Developer Blog for
details). With a simple API call to TRT, powerful mixed precision Tensor Core
inferencing on Tesla V100 GPUs can be applied without leaving TF. In this white paper,
we used TensorFlow:18.08-py3 NGC container, which was build based on TensorFlow 1.9.0
and TensorRT 4.0.1. Advanced users can use native TensorRT inferencing with tensorrt
18.08-py3 container. We will share inferencing experimental results based on both
TensorFlow-TensorRT (TF-TRT) and TRT in section 3.6. Using T4 GPUs powered by
NVIDIA Turing Tensor Cores, we further experimented inference with NGC container
TensorFlow:19.01-py3 and TensorRT:19.01-py3, with results updated in section 3.6. These
containers were built with TensorFlow 1.12.0 and TensorRT 5.0.2, respectively. Once test
feasibility is verified on a datacenter GPU like V100 or T4 with TF-TRT for fast
prototyping, then Jetson Nano or Jetson AGX Xavier platform can be used for low-
power edge-inferencing.

3.2 Setting the Target Metric and Project Scope
The first step is to decide performance evaluation metrics for the defect inspection
project. This metric can be precision and recall rates, or the harmonic mean of the two, and
F1-measure. The single-number evaluation metric is vital for a successful DL project since
the follow-up experiments would be developed upon this metric21. In a typical defect
inspection scenario, recall rate would usually be required to achieve 100%, which means
any defect escape is not allowed. What we are trying to achieve with DL is to increase
the precision rate, or in other words, to reduce false alarm rate while keeping 100%
recall of all defects. However, achieving both high recall and precision a hard problem
as shown in section 3.6 and the tradeoff is needed per application.

There may be more than one defect class in a typical defect inspection scenario, and we
would suggest focusing on top N defect classes first. N is 5 or 10 primary defects
depends on your scenario and application. Instead of setting up a huge scope to tackle
all defect classes, an alternative is to select N defects and start to collect and label
images.

21 A. Ng, Machine Learning Yearning http://www.mlyearning.org/

https://www.nvidia.com/object/docker-container.html
https://www.nvidia.com/object/docker-container.html
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_19.01.html#rel_19.01
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_19-01.html#rel_19-01
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-0-2
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
http://www.mlyearning.org/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 9

3.3 Labeling Defect Images
In our application, labeled defect images are composed of binary outputs, where zeros
represent defect areas shown in white, and ones represent defect-free areas shown in
black in Figure 3.

In most cases that you need labeling, there are many open source labeling tools in
GitHub, such as LabelMe. They can be integrated and implemented with an in-house data
preparation pipeline. It is an important interactive step to build a smooth data
preparation pipeline with correct labeling. In our experience, the first label output from
labelers might not be correct. It is typical for labeling to go through iterative review
process. The challenge is that not all defect patterns are easy to recognize by people
without necessary training. In practice we have found that this labeling process can be
one of the most productive ways to leverage your most valuable domain experts.

In a related case that occurred at NVIDIA, three labelers reviewed a single defective
image to draw bounding boxes. To speed-up review process, reference and defective
images were combined to create a side-by-side view. After the first iteration of labeling,
between 5-10% mismatched labels were identified. The mismatched images were then
isolated, and the labels were again reviewed. This process was repeated until a 0%
mismatch between labelers was reached. Finally, the average of the three labelers
dimensions was calculated and used for modeling.

Since the outputs of a DL segmentation model are probabilities of all image pixels, we
can fully utilize these values as a threshold to achieve project target metrics. We will
illustrate this topic in Section 3.4.

3.4 Data Preparation
Segmentation is a supervised learning process that maps input images to an output
segmentation map. DL trains this nonlinear complex mapping function. The following
image shows the input image and its corresponding output images of six DAGM defect
classes. Each defect class contains 150 defect images and 1000 defect-free images. The
defect inside an image was bounded with an ellipse. The parameters of this ellipse were
recorded in a separate text file, including semi-major axis, semi-minor axis, rotating
angle, and x, y position of the center of the ellipsoid.

 OpenCV was used generate the respective label image with these parameters as shown
in Figure 3.

https://github.com/wkentaro/labelme

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 10

Figure 3. DAGM defect images and its corresponding labeled output

Two different settings were prepared using the same dataset (Table 1). Training Set 1 is
used to train the model to detect each defect class, totaling six defects. Therefore, the
defect images of each class will be prepared separately. 100 defect images are used for
each defect class to train the U-Net model, the other 50 defect images and 1000 defect-
free images will be used to test the model, and provide average IOUs22, precision and
recall rates. Training Set 2 is used to demonstrate the generalization capability of U-Net.
All defect classes in Training Set 2 are unified and treated as a single class. We will build
a single U-Net model that is able to segment all defect classes. This kind of process is

22 "Intersection over Union (IoU) for object detection - PyImageSearch." 2016-11-07,
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/.
[Accessed 2019-03-11]

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 11

common in defect inspection. In this white paper, we will explain the DL application
process for Training Set 2.

Setting Training Set Size Validation Set Size Testing Set Size

Defect / Defect-free

1 100 30 20 / 1000

2 630 138 132 / 6000

Table 1. Dataset preparation

3.5 Model Development
Once the dataset is ready with defect images and its corresponding labeled images, we
can start to build the mapping function with U-Net deep learning segmentation model.
Many best practices on how to set up appropriate experiments to achieve target metrics
can be found in Andrew Ng’s Machine Learning Yearning book. To make modeling work
easier, we use the same architecture as U-Net, and experiment with the number of
kernels to make the model fit into our dataset. U-Net is a flexible DL model. The first
step is to fit the dataset with U-Net model, i.e., eight kernel numbers in the first layer,
then doubling the kernel number in the following hierarchy of layers, as shown in
Figure 1. Then we observe the loss from the training learning curve and decide whether
to increase further the model complexity. This step is to make sure that we have a model
with enough capacity to recognize all defects. Once you have confidence that the model
is complex enough to fit the dataset, then add regularization techniques, such as drop
out layers, L1 or L2 regularization, or even try to augment the dataset. The goal is to
make sure the loss on validation learning curve drops smoothly along with the loss on
training. This prevents overfitting the model.

In this white paper, U-Net model was built with eight kernel number in the first layer
for both training sets. The other parameter that was ignored was padding. Since U-Net
modeling is an encoding-decoding process, it first encodes the input image with several
convolution and max pooling layers, then decodes to the output layer with the same
number of convolution layers and max pooling layers. It is a symmetric mapping
function with the same layer numbers in both encoding and decoding sections. Having
the same padding setting makes things much easier, since each feature map convolved
by kernels remain the same size. The dropout layer is the only layer that would decrease
the shape of feature maps. The input image size should be a power of two (as per Figure
1). Every image was resized to 512x512 from the original DAGM dataset of size 500x500.

http://www.mlyearning.org/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 12

The model was trained with binary cross entropy and Adam optimizer23 with a learning
rate starting with 1e-3. As shown in Figure 4, learning curves for both training and
validation loss decline smoothly over 50 epochs. This means the learned U-Net model
can learn to fit to the training and validation dataset well.

•

Figure 4. Learning curve

After training for 50 epochs, Figure 5 shows the prediction result of U-net compared to
Ground truth.

Figure 5. U-Net prediction results

23 " Gentle Introduction to the Adam Optimization Algorithm for Deep Learning" 2017-07-03,
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.
[Accessed 2019-03-11]

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 13

3.6 Output Tradeoffs Between Precision and
Recall

The output of a classification model is a vector of probabilities, where each vector
represents class probability of each class of the query image predicted by the model. The
final predicted class is assigned with maximum likelihood criteria. In a segmentation
model, like U-Net, the output is also a set of probabilities. These probabilities are well
organized in the original query image format.

Table 2 shows an example output from a segmentation model. The original output from
the segmentation model is shown in left column in a NumPy array format. In the right
column is the visualized output that would usually be seen when printed out by
matplotlib. These digits are probabilities of all pixels of 512x512. The threshold was set
to 0.5 by default, i.e., every pixel was shown in white if the number is above 0.5,
otherwise in black. This finally leads to a visualization to show us the defect area in the
image.

NumPy Output matplotlib Output

Table 2. Output from U-Net model

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 14

The following abbreviations are used throughout the rest of this section:

 TN: true negative
 FN: false negative
 TP: true positive
 FP: false positive

Figure 6 is a simple illustration of binary anomaly detection, visually showing the
impacts of threshold change on precision and recall. For illustration only, defects and
non-defects distributions are Gaussian distributions, and defects are fewer than
non-defects. In real scenarios, each distribution would be more complicated, most likely
with multiple peaks, either from Gaussian distribution (from Central Limit Theorem) or
non-Gaussian distribution. In addition, defects populations are typically much smaller
than non-defects in industrial applications.

Figure 6. Illustration of simple binary anomaly detection

In the experimental results in Table 3, defects are about seven times fewer. In real
production case, defects are much smaller, typically in the tens to hundreds of defect
parts per million (DPPM) range. The red arrow in Figure 6 shows an increase in the
probability threshold, raising the criteria for predicting a defect. As Figure 6 illustrates,
false positives decrease as the threshold increases, thereby increasing precision.
However, at the same time, false negatives get larger, reducing recall. This illustrates the
fundamental trade-off between precision and recall. Determining the right threshold to
bias towards precision or recall is entirely application dependent. This requires sweep
experiments of precision and recall on the threshold of probability as shown in Table 3.
If reducing false positives (increasing precision) is more important, you need to increase
the threshold on probability while balancing precision-recall tradeoff. Achieving high
precision and high recall means your classifier has high discriminative power and the
areas under the receiver operating characteristic (ROC) curve is a measure of how well
classifier works.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 15

Figure 7 is another graphical illustration of a precision-recall diagram. You can think of
this diagram as projecting data distributions in Figure 6 into x-y plane from z-axis. The
area inside the circle is what ML algorithm detects as a defect. 7(a) and 7(b) show the
impact of precision and recall depending on the threshold of probability gets higher. If
the threshold on probability becomes higher, defect detection becomes harder, making
the circle smaller, and shifting the decision circle towards defects areas. In summary,
false negatives increase and false positives decrease, making recall lower and precision
higher.

Figure 7. Precision-recall diagram on different thresholds of probability

In real scenarios, data distribution as well as selecting the decision boundary from
anomaly detector based on DL is much more complicated to visualize. The journal
Nature’s 2015 paper titled “Deep Learning” by LeCun, Bengio, Hinton24 has a great
discussion and illustration on how learning data representations using DL transforms a
high-dimensional dataset into a suitable internal representation and automatically
discover the best representation from which to define boundaries needed for detection
or classification. These learned internal representations allow decision boundaries to be
defined that have been shown to drastically reduce the tradeoff between increasing
sensitivity to true positives while significantly reducing the rate of false positives. For
industrial applications where the cost of false positives can be extremely high, this can
be a source of tremendous value.

24 Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning, 436, Vol 521, Nature, 2015.

 7(a) Low threshold of probability 7(b) High threshold of probability

FN FN TN TN

FP TP FP TP

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 16

Table 3 shows precision-recall tradeoff from the sweep experiments varying the
threshold of probability. Total image data were 1039 (defects: 138, non-defects: 901).

Experiment
Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TP 137 135 135 135 135 135 135 133 131

TN 885 893 899 899 899 899 899 900 901

FP 16 8 2 2 2 2 2 1 0

FN 1 3 3 3 3 3 3 5 7

FP rate 0.0178 0.0089 0.0023 0.0023 0.0023 0.0023 0.0023 0.0011 0.0000

Precision 0.8954 0.9441 0.9854 0.9854 0.9854 0.9854 0.9854 0.9925 1.0000

Recall 0.9928 0.9783 0.9783 0.9783 0.9783 0.9783 0.9783 0.9638 0.9493

Table 3. Precision-recall experiments

With a threshold of 0.8, reasonable 99.25% precision, 96.38% recall, and 0.11% false
alarm rate were achieved. Table 4 is another way to view the same result.

Actual

Defect Defect-free

Pr
ed

ic
te

d

Defect 99.25% 0.75%

Defect-free 0.55% 99.45%

Table 4. Confusion matrix

In a production case at NVIDIA, a non-DL based AOI machine in PCBA manufacturing
produces high false positives with low precision. Thus, increasing precision by DL
automation is critical.

The U-Net model learns to accurately detect defects from a test dataset. It can generate
pixel-wise probabilities that can be used to make final decisions such as whether
something has a defect or is defect-free. This two-step process is common and can be
applied to many use cases, including medical imaging, video surveillance, and
autonomous machines. The first step uses U-Net to extract information from the input,
then the second step makes the final decision according to information from the
previous step.

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 17

Some examples from different verticals are shown in Table 5.

Healthcare

MRI

CT Scan

Microscopic Image

Output Left Ventricle Nodule Nuclei

Interpretation Heart disease Lung Cancer Drug Discovery

Smart Cities/Autonomous Machines

Camera Image

Camera Image

Camera Image

Output Human Road Road

Interpretation Intrusion alert Path for car to drive Path for drone to fly

Industrial

Hard Disk Drive

Injection Molding Parts

Semiconductor Wafer

Output Defect area Defect area Defect (optical hot spot)

Interpretation Defect or defect free Defect or defect free Defect or defect free

Table 5. Segmentation models in different verticals

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 18

3.7 Model Deployment
The NVIDIA Deep Learning SDK, including TRT will be helpful before deployment in the field
and TensorRT inference server (TRT-IS) enables flexible deployment of the inference model.
TRT is a high-performance DL inference optimizer and runtime that delivers low latency
and high-throughput for DL inference applications. Based on NVIDIA Docker, the TRT
container encapsulates all the libraries, executables, and drivers you need to develop a
TRT-based inference application. After downloading an NGC Docker image, you are in
a GPU-optimized local development environment for your inference solution with all
software and required dependencies installed. This is a starting point for your own
container-based edge, datacenter, or cloud deployment.

Applications software engineers or advanced users, who are comfortable with the
additional steps required to take a DL model into an environment which might not have
TensorFlow framework, are encouraged to use native TRT for maximum performance.

We used tensorrt 18.08-py3 NGC container for our experiments, based on TRT 4.0.1. Data
scientists or users for rapid prototyping should run optimized accelerated inference
without leaving TF framework. We used TF-TRT inferencing based on TensorFlow 18.08-
py3 NGC container. This TF-TRT container integrates with TRT 4.0.1.

Inferencing experimental results based on Tesla V100 GPUs and TensorRT 4 were
shown in Table 6. On mixed precision FP16 inferencing, we can see there are
performance boost of 2.1 times with TF-TRT and 8.6 times with TRT compared to native
TensorFlow. The tradeoff for TF-TRT versus TRT is that TF-TRT is easy to use and
integrates with TensorFlow workflows for fast prototyping. Once your idea is verified to
work with TF-TRT, TRT can be used for maximum performance.

Precision
Inference Method

TF TF-TRT TRT

FP32
Images/sec 141.8 236.1 1079.8

Performance Increase 1 1.7 7.6

FP16
Images/sec N/A 297.4 1219.7

Performance Increase 1 2.1 8.6

NOTE: FP32 TRT, FP32/FP16 TF-TRT for batch=128. FP16 TRT for batch=64. FP16 results are all through
Tensor Core mixed precision inferencing at Tesla V100 GPU for the input image size of 512x512. Tesla
V100 GPUs on a NVIDIA DGX Station™ workstation were used

Table 6. TF, TF-TRT, and TRT performance comparisons ― Tesla V100 GPUs and
TensorRT 4 engine

https://docs.nvidia.com/deeplearning/sdk/index.html
https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/
https://devblogs.nvidia.com/parallelforall/nvidia-docker-gpu-server-application-deployment-made-easy/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/rel_4-0-1.html#rel_4-0-1
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/rel_18.08.html#rel_18.08

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 19

Inferencing experimental results based on T4 GPUs and TensorRT 5 are shown in Table
7. Compared to CPU-based inference performance, there is a performance boost of 11.9
times with TF-TRT and 23.5 times with INT8 precision of TRT5 by NVIDIA Turing Tensor
Cores. The T4 GPU is packaged with an energy-efficient 70-watt, small PCIe form factor,
optimized for scale-out servers and purpose built to deliver state-of-the-art AI.

Precision Inference Method

 CPU-TF GPU-TF TF-TRT5 TRT5

FP32
Images/sec 38.6 230.4 320.0 438.8

Performance increase 1 5.8 8.1 11.1

FP16
Images/sec N/A N/A 334.0 501.0

Performance increase N/A N/A 8.4 12.6

INT8
Images/sec N/A N/A 459.0 909.0

Performance Increase N/A N/A 11.9 23.5

NOTE: All experiments were with batch=64. INT8 and FP16 results are all through Tensor Core mixed
precision inferencing at T4 GPU for the input image size of 512x512. The T4 GPU was used with Intel
CPU Skylake Gold 6148 v3 @ 2.40 GHz, dual socket 20-core

Table 7. TF, TF-TRT, and TRT performance comparisons ― T4 GPUs

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

Defect Inspection from Inception to Production

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 20

Using the same code, Jetson Nano platform throughput is 18 fps and Jetson AGX
Xavier platform throughput is 228.1 fps —a performance boost of 12.7 times that of
the Jetson Nano platform. These results, shown in Table 8, were obtained using
native TRT.

Table 8. Edge device performance ― Jetson Nano and Xavier AGX platforms

With native TRT, a DL framework like Tensorflow does not need to be installed on edge
devices. This is important for them since compute power and disk storage are limited.

Field
Embedded Device

Jetson Nano Jetson AGX Xavier

Input Precision FP16 FP16 INT8

Throughput(fps) 18.0 131.9 228.1

Speedup vs. Nano 1.0 7.3 12.7

NOTE: All experiments were with batch=1 and with maximum performance mode at Jetson.

Automatic Defect Inspection Using the NVIDIA End-to-End Deep Learning Platform WP-09268-001 | 21

Chapter 4. Summary and Future Work

As shown in this white paper, the NVIDIA Deep Learning platform can be successfully
applied to detection and segment defects in an end-to-end fashion for fast development
of automatic industrial inspection. Particularly, the U-Net architecture and the DAGM
2007 dataset was used for this demonstration. U-Net was able to train with good
generalization using a small labeled dataset. U-Net produced one-shot high-resolution
segmentation results overlaid on top of the input image. For fast deployment of DL
training and inferencing, NGC was used for Volta GPU optimized TensorFlow and
TensorRT docker containers. We achieved 96.38% recall rate and 99.25% precision rate
with 0.11% false alarm rate. Best-performing results on these two metrics are key
requirements for industrial inspection.

On Tesla V100 GPUs and TRT4 engine, from a TensorFlow container with a TensorRT
engine integrated, inference throughput increased by a factor of 2.1. With an optimized
TensorRT container from NGC, inference throughput was further improved by a factor
of 8.6. T4 GPUs and TRT5 engine were used for energy efficient and small form factor
inference deployment. Compared CPU-based TF inferencing, inference throughput was
increased by a factor of 23.5 based on an optimized TensorRT container from NGC. For
low-power and small form factor edge-inferencing, Jetson Nano platform throughput is
18 fps and Jetson AGX Xavier platform throughput 228.1 fps.

Future work includes using Siamese network for one-shot learning. This is an interesting
idea and worth exploration given the scarcity of dataset industrial inspection. For AOI
defect detection on PCBA manufacturing, Siamese network will be explored since they
have matching golden samples as well as defects.

www.nvidia.com

Notice
The information provided in this specification is believed to be accurate and reliable as of the date provided. However,
NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or
for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes
and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this
specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest
relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions about the
purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion
and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s
own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified
use without further testing or modification. Testing of all parameters of each product is not necessarily performed by
NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by
customer and to do the necessary testing for the application to avoid a default of the application or the product.
Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in
additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not
accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the
use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this specification. Information published by NVIDIA regarding third-party products or services does
not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third
party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of
information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any
damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale
for the product.

Trademarks
NVIDIA, the NVIDIA logo, GeForce, and SLI are trademarks and/or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2019 NVIDIA Corporation. All rights reserved.

	Chapter 1. Automatic Defect Inspection for Industrial Applications
	Chapter 2. Using U-Net to Solve Defect Inspection Challenges
	Chapter 3. Defect Inspection from Inception to Production
	3.1 Deep Learning End-to-End Workflow
	3.2 Setting the Target Metric and Project Scope
	3.3 Labeling Defect Images
	3.4 Data Preparation
	3.5 Model Development
	3.6 Output Tradeoffs Between Precision and Recall
	3.7 Model Deployment

	Chapter 4. Summary and Future Work

